A Dirichlet type problem for complex polyharmonic functions
نویسندگان
چکیده
منابع مشابه
Boundary Effects in Kernel Approximation and the Polyharmonic Dirichlet Problem
Boundary effects frequently pose a challenge in approximation theory. For approximation with kernels – an approach that is effective for treating scattered data in high dimensions, on manifolds, and in settings with cumbersome geometry – this is no exception. The negative influence of the boundary is well-understood theoretically and is easily observed numerically. By exploiting a potential the...
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملA critical elliptic problem for polyharmonic operators
In this paper, we study the existence of solutions for a critical elliptic problem for polyharmonic operators. We prove the existence result in some general domain by minimizing on some infinite-dimensional Finsler manifold for some suitable perturbation of the critical nonlinearity when the dimension of domain is larger than critical one. For the critical dimensions, we prove also the existenc...
متن کاملPositivity for equations involving polyharmonic operators with Dirichlet boundary conditions
when ε ≥ 0 is small. In particular, ∆2v + εv ≥ 0 in Ω, with v = ∆v = 0 on ∂Ω, implies v ≥ 0 for ε small. In numerical experiments ([14]) for one dimension a similar behaviour was observed under Dirichlet boundary conditions v = ∂ ∂nv = 0. In this paper we will derive a 3-G type theorem as in (1) but with G1,n replaced by the Green function Gm,n for the m-polyharmonic operator with Dirichlet bou...
متن کاملIntegration of polyharmonic functions
The results in this paper are motivated by two analogies. First, m-harmonic functions in Rn are extensions of the univariate algebraic polynomials of odd degree 2m−1. Second, Gauss’ and Pizzetti’s mean value formulae are natural multivariate analogues of the rectangular and Taylor’s quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules cou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Hungarica
سال: 2017
ISSN: 0236-5294,1588-2632
DOI: 10.1007/s10474-017-0740-4